skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Jiaxi, Lei"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Evaluating public health interventions during disease outbreaks requires an understanding of the spatial patterns underlying epidemiological processes. In this study, we explore how Large Language Models (LLMs) can leverage spatial understanding and contextual reasoning to support spatially-disaggregated epidemiological simulations. We present an approach in which a system dynamics model queries an LLM at key decision points to determine appropriate mitigation strategies, informed by local profiles and the current outbreak status, and incorporates these strategies into the simulations. Through a series of experiments with COVID-19 data from San Diego County, we show how different LLMs perform in tasks requiring spatial adaptation of mitigation strategies, and how incorporating connectivity information through Retrieval-Augmented Generation (RAG) enhances the performance of these customizations. The results reveal significant differences among LLMs in their ability to account for spatial structure and optimize mitigation strategies accordingly. This highlights the importance of selecting the right model and enhancing it with relevant contextual information for effective public health interventions. 
    more » « less
  2. Evaluating public health interventions during disease outbreaks requires an understanding of the spatial patterns underlying epidemiological processes. In this study, we explore how Large Language Models (LLMs) can leverage spatial understanding and contextual reasoning to support spatially-disaggregated epidemiological simulations. We present an approach in which a system dynamics model queries an LLM at key decision points to determine appropriate mitigation strategies, informed by local profiles and the current outbreak status, and incorporates these strategies into the simulations. Through a series of experiments with COVID-19 data from San Diego County, we show how different LLMs perform in tasks requiring spatial adaptation of mitigation strategies, and how incorporating connectivity information through Retrieval-Augmented Generation (RAG) enhances the performance of these customizations. The results reveal significant differences among LLMs in their ability to account for spatial structure and optimize mitigation strategies accordingly. This highlights the importance of selecting the right model and enhancing it with relevant contextual information for effective public health interventions. 
    more » « less